Sunday Times Teaser 3151 - Plant Stock

by Howard Williams

Published Sunday February 122023

A garden centre bought 500 plants of four different varieties from its supplier. The price per plant of each variety was a whole number of pence and their total average price worked out at exactly one pound.
The number of plants of variety 2 purchased was "d" greater than that of variety 1 , and its price per plant was "d" pence less than that of variety 1 . Similarly, the number of variety 3 plants equalled the number of variety 2 plus " d " and its price equalled the variety 2 price less " d " pence. Finally, the number of variety 4 plants equalled the number of variety 3 plus " d " and its price equalled the variety 3 price less "d" pence.
What, in pence, is the most that a plant could have cost?

Solution by Brian Gladman

Let n be the number of plant variety 1 that is bought at cost p per plant. The numbers and cost for the four varieties are hence:

$$
\begin{array}{llll}
n & n+d & n+2 d & n+3 d \\
p & p-d & p-2 d & p-3 d
\end{array}
$$

The total numbers and total cost are hence:

$$
\begin{gather*}
4 n+6 d=500 \tag{1}\\
4 n p-6 n d+6 p d-14 d^{2}=50000 \tag{2}
\end{gather*}
$$

which can be simplified and rearranged as:

$$
\begin{array}{lc}
n= & (250-3 d) / 2 \\
p= & \left\{(d+75)^{2}+4375\right\} / 100 \tag{3}
\end{array}
$$

Note that p is a monotonically increasing function of d, which means that $p_{\max }$ occurs when $d_{\max }$ occurs. Since $n \geq 0$, equation (1) shows that $d_{\max }$ is at most 83 , so we need the largest d value that is 83 or less which gives an integer value of p in equation (3).

A few trials give this as $d=80$, showing that the most expensive plant could cost at most $£ 2.84$, of which 5 could be bought.

