Sunday Times Teaser 3147 – Noteworthy

by Victor Bryant

Published Sunday January 15 2023

Apparently in Costa Lotta a single-digit percentage of banknotes are forgeries and so I have designed a marker pen which tests whether notes are genuine. I thought it would be quite useful to the banks because, on average, for every N uses it only gives an incorrect result once (where N is some whole number).

Unfortunately my design has been abandoned by the banks because it turns out that on average for every N occasions on which the pen indicates a forgery, only one of the notes will in fact be forged!

What is N?

Solution by Brian Gladman

Let d be the single digit forgery percentage and b (bad) be its fraction form (d/100). Let f_p and f_n be the fraction of forged notes wrongly classified as genuine and the fraction of genuine notes wrongly classified as forgeries respectively. Let the number of tests conducted be t. Hence:

 $f_n bt$

(1) The number of genuine notes wrongly tested as forgeries: $f_n(1-b)t$ (2) The number of genuine notes correctly tested as genuine: $(1-f_n)(1-b)t$

(3) The number of forgeries wrongly tested as genuine:

(4) The number of forgeries correctly tested as forgeries: $(1 - f_p)bt$

The test error rate [(1) + (3)] is 1/N:

$$f_n(1-b)t + f_pbt = t/N \Rightarrow f_n(1-b) + f_pb = 1/N$$

In **N** tests indicating forgeries [(1) + (4)] only one test was correct:

$$f_n(1-b)t = N-1$$
; $(1-f_p)bt = 1 \Rightarrow f_n(1-b) = (N-1)(1-f_p)b$

If we assume now that the two error rates as equal $(f_p = f_n = f)$ the equations then become:

$$f = 1/N$$
; $(1-b)f = (N-1)(1-f)b$

These simplify to give:

$$N = \sqrt{(1-b)/b} + 1 = \sqrt{100/d - 1} + 1$$

which provides the solution N = 8 for d = 2%.

Different False Positives and Negatives

Eliminating f_n :

$$1/N - f_p b = (N-1)(1-f_p)b \Rightarrow 1 - Nf_p b = N(N-1)(1-f_p)b$$

Collecting terms and simplifying:

$$N(N-1) - 1/b = N(N-2)f_p$$

In terms of forgery percentage:

$$(1-f_p)N^2 + (2f_p - 1)N - 100/d = 0$$

 $f_p = \frac{N^2 - N - 100/d}{N(N-2)}$

This has a solution for $f_p = 0$:

$$N = \frac{\sqrt{400/d + 1} + 1}{2}$$

which gives the result N = 5 for a forgery percentage d = 5%. It is not, however, the intended solution.

Eliminating f_p instead:

$$f_n(1-b) = (N-1) - (N-1)\left(\frac{1}{N} - f_n(1-b)\right)$$

gives another result:

$$N = \frac{1}{\sqrt{\frac{1}{f_n(1-b)} + 1}} + 1 = \sqrt{\frac{100 - d}{100 - d + 100/f_n}} + 1$$

but in this case there is no solution other than N = 1 when $f_n = 0$.