Sunday Times Teaser 3147 - Noteworthy

by Victor Bryant

Published Sunday January 152023

Apparently in Costa Lotta a single-digit percentage of banknotes are forgeries and so I have designed a marker pen which tests whether notes are genuine. I thought it would be quite useful to the banks because, on average, for every N uses it only gives an incorrect result once (where N is some whole number).
Unfortunately my design has been abandoned by the banks because it turns out that on average for every N occasions on which the pen indicates a forgery, only one of the notes will in fact be forged!
What is N ?
Solution by Brian Gladman
Let \boldsymbol{d} be the single digit forgery percentage and \boldsymbol{b} (bad) be its fraction form ($d / 100$). Let $\boldsymbol{f}_{\boldsymbol{p}}$ and $\boldsymbol{f}_{\boldsymbol{n}}$ be the fraction of forged notes wrongly classified as genuine and the fraction of genuine notes wrongly classified as forgeries respectively. Let the number of tests conducted be \boldsymbol{t}. Hence:
(1) The number of genuine notes wrongly tested as forgeries: $\boldsymbol{f}_{\boldsymbol{n}}(\mathbf{1}-\boldsymbol{b}) \boldsymbol{t}$
(2) The number of genuine notes correctly tested as genuine: $\left(\mathbf{1}-\boldsymbol{f}_{\boldsymbol{n}}\right)(\mathbf{1}-\boldsymbol{b}) \boldsymbol{t}$
(3) The number of forgeries wrongly tested as genuine: $\boldsymbol{f}_{\boldsymbol{p}} \boldsymbol{b t}$
(4) The number of forgeries correctly tested as forgeries: $\quad\left(\mathbf{1}-\boldsymbol{f}_{\boldsymbol{p}}\right) \boldsymbol{b t}$

The test error rate $[(1)+(3)]$ is $\mathbf{1} / \boldsymbol{N}$:

$$
f_{n}(1-b) t+f_{p} b t=t / N \Rightarrow f_{n}(1-b)+f_{p} b=1 / N
$$

In \boldsymbol{N} tests indicating forgeries [(1) +(4)] only one test was correct:

$$
f_{n}(1-b) t=N-1 ;\left(1-f_{p}\right) b t=1 \Rightarrow f_{n}(1-b)=(N-1)\left(1-f_{p}\right) b
$$

If we assume now that the two error rates ae equal $\left(\boldsymbol{f}_{\boldsymbol{p}}=\boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}\right)$ the equations then become:

$$
f=1 / N ;(1-b) f=(N-1)(1-f) b
$$

These simplify to give:

$$
N=\sqrt{(1-b) / b}+1=\sqrt{100 / d-1}+1
$$

which provides the solution $\boldsymbol{N}=\mathbf{8}$ for $\boldsymbol{d}=\mathbf{2 \%}$.

Different False Positives and Negatives

Eliminating $\boldsymbol{f}_{\boldsymbol{n}}$:

$$
1 / N-f_{p} b=(N-1)\left(1-f_{p}\right) b \Rightarrow 1-N f_{p} b=N(N-1)\left(1-f_{p}\right) b
$$

Collecting terms and simplifying:

$$
N(N-1)-1 / b=N(N-2) f_{p}
$$

In terms of forgery percentage:

$$
\begin{gathered}
\left(1-f_{p}\right) N^{2}+\left(2 f_{p}-1\right) N-100 / d=0 \\
f_{p}=\frac{N^{2}-N-100 / d}{N(N-2)}
\end{gathered}
$$

This has a solution for $\boldsymbol{f}_{\boldsymbol{p}}=\mathbf{0}$:

$$
N=\frac{\sqrt{400 / d+1}+1}{2}
$$

which gives the result $\boldsymbol{N}=\mathbf{5}$ for a forgery percentage $\boldsymbol{d}=\mathbf{5 \%}$. It is not, however, the intended solution.
Eliminating $\boldsymbol{f}_{\boldsymbol{p}}$ instead:

$$
f_{n}(1-b)=(N-1)-(N-1)\left(\frac{1}{N}-f_{n}(1-b)\right)
$$

gives another result:

$$
N=\frac{1}{\sqrt{\frac{1}{f_{n}(1-b)}+1}}+1=\sqrt{\frac{100-d}{100-d+100 / f_{n}}}+1
$$

but in this case there is no solution other than $\boldsymbol{N}=\mathbf{1}$ when $\boldsymbol{f}_{\boldsymbol{n}}=\mathbf{0}$.

