Sunday Times Teaser 3123 - A Six-Pipe Problem

by Nick MacKinnon

Published Sunday July 31 2022

A factory makes six types of cylindrical pipe, A to F in decreasing size, whose diameters in centimetres are whole numbers, with type A 50 per cent wider than type B. The pipes are stacked in the yard as a touching row of As with an alternating row of touching Bs and Cs in the next layer, with each B touching two As. Type Ds fill the gap between the As and the ground; Es fill the gap between As and the Bs; and Fs

fill the gap between As, Ds and the ground. Finally, another row of As is put on top of the stack, giving a height of less than 5 metres.

What is the final height of the stack in centimetres?

Solution by Brian Gladman

Since pipe A is 50% larger than pipe B, we can define their radii as 2r and 3r and we can see immediately from the geometry above that the radius of pipe C is r and the

overall stack height is 14r. Let the radii of the pipes D, E and F be d, e and f respectively.

Considering pipe D first, the illustrated right-angled triangle between the centres of left-hand pipes A and D gives:

$$(3r)^2 + (3r - d)^2 = (3r + d)^2$$

which simplifies to give d = 3r/4.

Now using the right-angled triangle on the diagonal between the centres of left-hand pipes A and E gives:

$$(3r)^2 + (2r - e)^2 = (3r + e)^2$$

which simplifies to e = 2r/5.

Finally considering the triangles between the centres of the lower middle A pipe, the right-hand F pipe and the following D pipe, we obtain two equations for the horizontal distances between the centres of A and F and the centres of F and D:

$$(h_{AF})^2 = (3r+f)^2 - (3r-f)^2 = 12rf$$

 $(h_{FD})^2 = (d+f)^2 - (d-f)^2 = 4df = 3rf$

The sum of these two distances is 3r, hence:

$$\sqrt{12rf} + \sqrt{3rf} = 3r$$

which, after squaring and simplifying, gives f = r/3.

Since the pipe *diameters* are integer, r must be a multiple of 30, giving the six pipe *radii* as:

90k, 60k, 30k, 45k/2, 12k and 10k

with an overall stack height of 420k for some integer k.

Since the stack height is less than 5 meters, k must be 1, which gives a height of 420 cm as the solution. The pipe diameters are then 180, 120, 60, 45, 24 and 20 cm.

Using Descartes Theorem and Soddy Circles

Consider any three mutually tangential circles p, q and r together with a fourth circle s mutually tangential to all of them. Descartes theorem can be used to show that:

$$s = \frac{pqr}{pq + qr + rp \pm 2\sqrt{pqr(p + q + r)}}$$

If the circle $r \rightarrow \infty$ (circle \rightarrow straight line) this reduces to:

$$s = \frac{pq}{p + q \pm 2\sqrt{pq}}$$

Here the plus/minus on the square roots determines whether the fourth tangential circle is interior/exterior to the other three.

For the 3 circles $(A, A, line) \rightarrow (3r, 3r, \infty) \rightarrow d$:

$$d = \frac{9r^2}{6r + 2\sqrt{9r^2}} = \frac{3r}{4}$$

For the 3 circles $(A, A, B) \rightarrow (3r, 3r, 2r) \rightarrow e$:

$$e = \frac{18r^3}{21r^2 + 2\sqrt{144r^4}} = \frac{2r}{5}$$

For the 3 circles $(A, D, line) \rightarrow (3r, d, \infty) \rightarrow f$:

$$f = \frac{9r^2/4}{15r/4 + 2\sqrt{9r^2/4}} = \frac{r}{3}$$

With the same results as before.