Sunday Times Teaser 3123-A Six-Pipe Problem

by Nick MacKinnon
Published Sunday July 312022

A factory makes six types of cylindrical pipe, A to F in decreasing size, whose diameters in centimetres are whole numbers, with type A 50 per cent wider than type B. The pipes are stacked in the yard as a touching row of As with an alternating row of touching Bs and Cs in the next layer, with each B touching two As. Type Ds fill the gap between the As and the ground; Es fill the gap between As and the Bs; and Fs fill the gap between As, Ds and the ground. Finally, another row of As is put on top of the stack, giving a height of less than 5 metres.
What is the final height of the stack in centimetres?
Solution by Brian Gladman

Since pipe A is 50% larger than pipe B, we can define their radii as $2 r$ and $3 r$ and we can see immediately from the geometry above that the radius of pipe C is r and the
overall stack height is $14 r$. Let the radii of the pipes D, E and F be d, e and f respectively.
Considering pipe D first, the illustrated right-angled triangle between the centres of left-hand pipes A and D gives:

$$
(3 r)^{2}+(3 r-d)^{2}=(3 r+d)^{2}
$$

which simplifies to give $d=3 r / 4$.
Now using the right-angled triangle on the diagonal between the centres of left-hand pipes A and E gives:

$$
(3 r)^{2}+(2 r-e)^{2}=(3 r+e)^{2}
$$

which simplifies to $e=2 r / 5$.
Finally considering the triangles between the centres of the lower middle A pipe, the right-hand F pipe and the following D pipe, we obtain two equations for the horizontal distances between the centres of A and F and the centres of F and D :

$$
\begin{gathered}
\left(h_{A F}\right)^{2}=(3 r+f)^{2}-(3 r-f)^{2}=12 r f \\
\left(h_{F D}\right)^{2}=(d+f)^{2}-(d-f)^{2}=4 d f=3 r f
\end{gathered}
$$

The sum of these two distances is $3 r$, hence:

$$
\sqrt{12 r f}+\sqrt{3 r f}=3 r
$$

which, after squaring and simplifying, gives $f=r / 3$.
Since the pipe diameters are integer, r must be a multiple of 30 , giving the six pipe radii as:

$$
90 k, 60 k, 30 k, 45 k / 2,12 k \text { and } 10 k
$$

with an overall stack height of $420 k$ for some integer k.
Since the stack height is less than 5 meters, k must be 1 , which gives a height of 420 cm as the solution. The pipe diameters are then $180,120,60,45,24$ and 20 cm .

Using Descartes Theorem and Soddy Circles

Consider any three mutually tangential circles p, q and r together with a fourth circle s mutually tangential to all of them. Descartes theorem can be used to show that:

$$
s=\frac{p q r}{p q+q r+r p \pm 2 \sqrt{p q r(p+q+r)}}
$$

If the circle $r \rightarrow \infty$ (circle \rightarrow straight line) this reduces to:

$$
s=\frac{p q}{p+q \pm 2 \sqrt{p q}}
$$

Here the plus/minus on the square roots determines whether the fourth tangential circle is interior/exterior to the other three.

For the 3 circles $(A, A$, line $) \rightarrow(3 r, 3 r, \infty) \rightarrow d$:

$$
d=\frac{9 r^{2}}{6 r+2 \sqrt{9 r^{2}}}=\frac{3 r}{4}
$$

For the 3 circles $(A, A, B) \rightarrow(3 r, 3 r, 2 r) \rightarrow e$:

$$
e=\frac{18 r^{3}}{21 r^{2}+2 \sqrt{144 r^{4}}}=\frac{2 r}{5}
$$

For the 3 circles $(A, D$, line $) \rightarrow(3 r, d, \infty) \rightarrow f$:

$$
f=\frac{9 r^{2} / 4}{15 r / 4+2 \sqrt{9 r^{2} / 4}}=\frac{r}{3}
$$

With the same results as before.

