Sunday Times Teaser 3116 - Poll Positions

by Nick MacKinnon
Published Sunday June 122022
In an election for golf-club president, voters ranked all four candidates, with no voters agreeing on the rankings. Three election methods were considered.
Under First-past-the-post, since the first-preferences order was A, B, C, D, the president would have been A.

Under Alternative Vote, since A had no majority of first preferences, D was eliminated, with his 2nd and 3 rd preferences becoming 1st or 2 nd preferences for others. There was still no majority of 1 st preferences, and B was eliminated, with his 2nd preferences becoming 1st preferences for others. C now had a majority of 1st preferences, and would have been president.

Under a Borda points system, candidates were given 4, 3, 2, or 1 points for each 1st, 2nd, 3rd or 4th preference respectively. D and C were equal on points, followed by B then A .
How many Borda points did each candidate receive?

Solution by John Crabtree

There are at most 24 voters since each voter gives a different order of preference for the four candidates. And there are at most six of these ($\mathrm{ABCD}, \mathrm{ABDC}, \mathrm{ACBD}, \mathrm{ACDB}, \mathrm{ADBC}, \mathrm{ADCB}$) in which A will be the first preference. Hence, with A, B, C and D as the numbers of first preference votes for the four candidates (with $A>B>C>D$), the maximum numbers of first preference votes for $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $6,5,4$, and 3 respectively.
Since $B>C$ and C overtakes B when D is eliminated in the first round of AV voting, D must transfer at least 2 votes to C . Hence the minimum first preference votes for $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are $5,4,3$ and 2 respectively.

Hence the possible sets for (A, B, C, D) are $(6,5,4,3),(6,5,4,2),(6,4,3,2)$ and $(5,4,3,2)$. In order to have two transfers to C , the votes with D in first place must include DCAB and DCBA.

For $(6,5,4,3)$, there are 18 voters with a total of $180=4 \times 45$ Borda points. When D is eliminated in the first round of AV voting, two votes (DCAB and DCBA) transfer to C and D's third vote must transfer to A to ensure that C has more first place votes than B. A's six first preference votes give A 24 border points; the minimum Borda points for A from B's five (of a possible six) first preference votes is $2 \times 1+2 \times 2+1 \times 3=9$, while C's four first preference votes contribute a minimum of $2 \times 2+2 \times 1=6$. Finally, D's three votes (DCAB, DCBA and DAxy) give a further 6. Hence A has a minimum of 45 Borda points, more than the average, which means that A cannot come last as required.
For $(6,5,4,2)$, there are 17 voters with $170=4 \times 42.5$ Borda points. Proceeding in the same way as above, A's minimum score in this case is $6 \times 4+(2 \times 1+2 \times 2+1 \times 3)+(2 \times 1+2 \times 2)+(1 \times 1+1 \times 2)=42$ Borda points which cannot put A in last place.

For $(6,4,3,2)$, there are 15 voters with $150=4 \times 37.5$ Borda points. In this case A's min score is $6 \times 4+$ $(2 \times 1+2 \times 2)+(2 \times 1+1 \times 2)+(1 \times 1+1 \times 2)=37$ Borda points, which again cannot put A in last place.

For $(5,4,3,2)$ there are 14 voters with $140=4 \times 35$ Borda points. A's minimum score is now $5 \times 4+$ $(2 \times 1+2 \times 2)+(2 \times 1+1 \times 2)+(1 \times 1+1 \times 2)=33$ Borda points. With $C=D$ and $D>B>A$, the only solution is $A=33, B=35$ and $C=D=36$.
At this point the teaser is solved. As a check, one needs to find a set of votes.
The votes with D in first place are DCAB and DCBA.
Looking at A's Borda points requires BCDA, BDCA, BCAD, BDAC; CBDA, CDBA and CpAq.
Looking at C's Borda points requires $\mathrm{ABDC}, \mathrm{ADBC}, \mathrm{ABCD}, \mathrm{ADCB}$ and ACrs .
Looking at B's Borda points requires $\mathrm{CpAq}=\mathrm{CDAB}$ and $\mathrm{ACrs}=\mathrm{ACDB}$.
Hence this set of votes is unique.
Under AV, C has 8 first place votes and A has 6 first place votes.

