Sunday Times Teaser 3081 - Connect Four

By Howard Williams

Published Sunday October 102021
I have four different two-digit numbers, each having at least one digit which is a three. When I multiply any three of these numbers together I get a product that, with the inclusion of a leading zero, is one or more repetitions of the repetend of the reciprocal of the fourth two-digit number. A repetend is the repeating or recurring decimal of a number. For example, 1 divided by 27 is $0.037037 \ldots .$. , giving a repetend of 037 ; in that case, the product would be 37 or 37037 or 37037037 etc.

What, in ascending order, are the four two-digit numbers?
Solution by Brian Gladman
Consider a two-digit integer d with a decimal reciprocal that consists of a recurring sequence of digits of length N starting immediately after the decimal point. If the recurring sequence as an integer is r , we then have:

$$
\frac{1}{d}=r\left(10^{-n}+10^{-2 n}+\cdots\right)=\frac{10^{-n} r}{1-10^{-n}}
$$

which simplifies to:

$$
d \times r=10^{n}-1
$$

From the teaser description we know that the integer r is the product of three two-digit numbers, which means that we are looking for an n value that allows $10^{n}-1$ to be expressed as four two-digit numbers each of which contains at least one 3 digit. The minimum and maximum possible values are $13 \times 23 \times 30 \times 31=278,070$ and $63 \times 73 \times 83 \times 93=35,499,681$ so we know that $6 \leq n \leq 8$ and factoring $10^{n}-1$ into its prime factors for these n values:

$$
\begin{aligned}
& 10^{6}-1=3^{3} \times 7 \times 11 \times 13 \times 37 \\
& 10^{7}-1=3^{\wedge} 2 \times 239 \times 4649 \\
& 10^{8}-1=3^{2} \times 11 \times 73 \times 101 \times 137
\end{aligned}
$$

shows that only $n=6$ offers the possibility that $10^{n}-1$ can be expressed as the product of four two-digit integers of the specified form.

For the $n=6$ factors, the only way to 'absorb' the 7 to create a two-digit number with a three digit is $7 \times 9=63$ and the 11 can then be combined with the remaining three to give the four numbers and the answer as:

$$
13 \times 33 \times 37 \times 63
$$

