Sunday Times Teaser 3068 - Valued Playwrights

by Victor Bryant

Published Sunday July 112021

I have given each letter of the alphabet a different whole-number value from 1 to 26 . For example, $\mathrm{P}=4, \mathrm{~L}=8, \mathrm{~A}=3$ and $\mathrm{Y}=24$. With my numbers I can work out the value of any word by adding up the values of its letters, for example the word PLAY has a value of 39 .

It turns out that the playwrights:
BECKETT, FRAYN, PIRANDELLO, RATTIGAN, SHAKESPEARE and SHAW
all have the same prime value.
Also, COWARD, PINERO and STOPPARD have prime values.
What are those three prime numbers?

Solution by Ciaran Lewis

- Using minimum and maximum values available for letters in each name, without constraints to be established later, we can set boundaries on the Common Prime (CP) which is the sum of the letter values in a name. We see that PIRANDELLO sets a minimum of 52 and SHAW sets a maximum of 77 . Then $\mathrm{CP}=53,59,61,67,71$ or 73 .
- Equating SHAW and SHAKESPEARE leads to $\mathrm{W}=\mathrm{KESR}+2 \mathrm{E}+7$. From this identity, we see that $\mathrm{E}=1$ or 2 and that KESR values are drawn from ($1,2,5,6,7$ or 9). Furthermore, both 1 and 2 must be used by this quartet and if $\mathrm{E}=1$, then $\mathrm{W}=23,25$ or 26 whereas if $\mathrm{E}=2$, then $\mathrm{W}=25$ or 26 . Finally, we also see that the range of KESR totals is 14-19.
- Returning to SHAW, the maximum value of $S=9$ is used to show the maximum value possible is SHAW $=63$. From PIRANDELLO $=\mathrm{INDO}+\mathrm{ER}+23$, we see minimum ER is $1+2=3$ and minimum INDO is $5+6+10+11=32$ (both in an order to be determined) with result that the minimum value possible is PIRANDELLO $=58$. Hence, $\mathrm{CP}=59$ or 61 .
- With this new constraint, we return to PIRANDELLO $=I N D O+E R+23$ and note that the previous minimum value must be increased by 1 or 3 to match the CP options still open. $\mathrm{E} / \mathrm{R}=1 / 2$ uses mandatory values in KESR quartet and therefore only $5,6,7,9,10$ etc values are available in INDO quartet to find the required 1 or 3 increase. By looking at consequences of various SK options there are a limited number of ways to have INDO $=33$ or 35 . In fact, only $S / K=6 / 9$ with INDO from $5,7,10,11$ allows $\mathrm{CP}=59$ and only $\mathrm{S} / \mathrm{K}=6 / 7$ with INDO from $5,9,10,11$ allows $\mathrm{CP}=61$.
- Returning again to SHAW with $S=6 / 7 / 9$ we see $S=6$ is not viable, requiring $H / W=24 / 26$ for $\mathrm{CP}=59$ and requiring $\mathrm{H} / \mathrm{W}=26 / 26$ for $\mathrm{CP}=61$. Hence, from previous bullet, we conclude $\mathrm{K}=6$ and $\mathrm{S}=7$ or 9 with $\mathrm{CP}=61$ or 59 resp.
- Returning to SHAKESPEARE $=2 \mathrm{~S}+\mathrm{H}+2 \mathrm{E}+(2 \mathrm{~A}+\mathrm{ER}+\mathrm{K}+\mathrm{P})=2(\mathrm{E}+\mathrm{S})+\mathrm{H}+19$ we can test the four $\mathrm{E}+\mathrm{S}$ options (i.e. 8,10,9 and 11). Only ESH=1,7,26 with $\mathrm{CP}=61$ and $\mathrm{ESH}=1,9,20$ or $\mathrm{ESH}=2,9,18$ with $\mathrm{CP}=59$ are valid.
- Returning yet again to SHAW and recalling that W options depend on $E=1$ or 2, we find that the only self-consistent option is for $\mathbf{E = 1}$ and SHAW $=\mathbf{7 + 2 6 + 3 + 2 5}=\mathbf{6 1}$.
- In summary, we now know $\mathbf{C P}=\mathbf{6 1}$ with $\mathrm{E}=1, \mathrm{R}=2, \mathrm{~A}=3, \mathrm{P}=4, \mathrm{~K}=6, \mathrm{~S}=7, \mathrm{~L}=8, \mathrm{Y}=24, \mathrm{~W}=25$ and $\mathrm{H}=26$. Furthermore, we know from above that $\mathrm{INDO}=35$ and uses $5,9,10$ and 11 . From now on, any new letters have a value $12,13,14$ etc.
- Considering RATTIGAN $=(2 \mathrm{~T}+\mathrm{G})+\mathrm{IN}+8=61$, we have $2 \mathrm{~T}+\mathrm{G}=37,38,39,40$ etc. Hence $\mathrm{IN}=16,15,14,13$ etc. Since INDO uses $5,9,10,11$ only $\mathrm{IN}=5 / 10$ or $5 / 9$ are possible (NB $16=5+11$ uses both D value options). Now we conclude $\mathrm{I}=5$ or $\mathrm{N}=5$ and that $\mathrm{D}=11$ with $\mathrm{INO}=24$ and PINERO $=31$.
- From $\mathrm{BECKETT}=2 \mathrm{~T}+\mathrm{B}+\mathrm{C}+8=61$, we have (for $\mathrm{T}=12$) $\mathrm{BC}=29$ from values $13,14,15$ etc. or (for $\mathrm{T}=13$) $\mathrm{BC}=27$ from values $12,14,15$ etc.
- Subtracting RATTIGAN from BECKETT, we see $\mathrm{GIN}=\mathrm{BC}$. For $\mathrm{T}=12, \mathrm{G}=14$ or 15 with $\mathrm{IN}=15$ or 14 we have $\mathrm{GIN}=29=\mathrm{BC}$. Hence $\mathrm{B} / \mathrm{C}=13 / 16$ (not $14 / 15$ as one of these is G value). For $\mathrm{T}=13$ case, there is an inconsistency in that $\mathrm{G}=12$ and one of B / C is also 12 .
- Updating the summary, we now know that $\mathrm{CP}=61$ with $\mathrm{E}=1, \mathrm{R}=2, \mathrm{~A}=3, \mathrm{P}=4, \mathrm{I} / \mathrm{N}=5, \mathrm{~K}=6, \mathrm{~S}=7$, $\mathrm{L}=8, \mathrm{O}=9 / 10, \mathrm{D}=11, \mathrm{~T}=12, \mathrm{~B} / \mathrm{C}=13 / 16, \mathrm{Y}=24, \mathrm{~W}=25$ and $\mathrm{H}=26$. Furthermore, we know from above that $\mathrm{INO}=24$ and uses 5,9 and 10 .
- From FRAYN $=\mathrm{FN}+29=61$ we see $\mathrm{N}=5,9$ or 10 requires $\mathrm{F}=27,23$ or 22 and hence $\mathrm{N}=5$ is not possible. This means $\mathrm{I}=5$ and $\mathrm{O} / \mathrm{N}=9 / 10$.
- COWARD $=\mathrm{CO}+41$ where $\mathrm{C}=13 / 16$ and $\mathrm{O}=9 / 10$ with $\mathrm{CO}=22,23,25$ or 26 . The only prime available comes from $26+41$ and hence $\mathbf{C O W A R D}=\mathbf{6 7}$. Also, $\mathrm{C}=16$ and $\mathrm{O}=10$
- Finally, $\operatorname{STOPPARD}=7+\mathbf{1 2}+\mathbf{1 0}+\mathbf{4 + 4 + 3 + 2 + 1 1 = 5 3}$.

