Sunday Times Teaser 3047 - Some Permutations
 by Howard Williams

Solution by Erling Torkildsen (15 February 2021)

The sum of numbers made of complete permutations of its n digits can be written as a product of a number and its digit-sum: $s_{n}=k_{n}\left(a_{0}+a_{1}+\cdots+a_{n-1}\right)$ where k is given by:

$$
k_{n}=\sum_{i=0}^{n-1}(n-1)!\cdot 10^{i} \Rightarrow \mathrm{k}_{3}=222 \text { and } k_{5}=266,664
$$

That way we have:

$$
s_{3}=222 \cdot(\mathrm{a}+\mathrm{b}+\mathrm{c}) \quad \text { and } \quad s_{5}=266,664 \cdot(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e})
$$

As s_{3} is even and contains three 3 's we get:

$$
\frac{3330}{222} \leq a+b+c \leq \frac{3338}{222} \Rightarrow a+b+c=15
$$

For s_{5} we get $(a+b+c+d+e)=15+d+e \in\{18, \cdots, 32\}$
By inspection only $(a+b+c+d+e)=25$ lets s_{5} have five 6 's $(266,664 \cdot 25=6,666,600)$
$(a+b+c)=15 \Rightarrow(\mathrm{a}, \mathrm{b}, \mathrm{c}) \in\{(1,5,9),(1,6,8),(2,4,9),(2,5,8),(2,6,7),(3,4,8),(3,5,7),(4,5,6)\}$
$(d+e)=25-15=10 \Rightarrow(\mathrm{~d}, \mathrm{e}) \in\{(1,9),(2,8),(3,7),(4,6)\}$
$\{a, b, c\}$ and $\{d, e\}$ have 16 disjoint unions where $\{1,5,9\} \cup\{2,8\}$ and $\{2,5,8\} \cup\{1,9\}$ give the smallest product of the members (720).

The digits are 1, 2, 5, 8 and 9 .

