Party Time

Graham Smithers

A four-digit number with different positive digits and with the number represented by its last two digits a multiple of the number represented by its first two digits, is called a PAR.

A pair of PARs is a PARTY if no digit is repeated and each PAR is a multiple of the missing positive digit.

I wrote down a PAR and challenged Sam to use it to make a PARTY. He was successful.
I then challenged Beth to use my PAR and the digits in Sam's PAR to make a different PARTY. She too was successful.

What was my PAR?

Solution

Answer: 1785
Possible PARs [Increasing order] Possible larger PARs

1236
1248
1284
1296
1326
1352
1365
1378
1428
1456
1498
1632
1648
1734
1768
1785
1836
1854
1872
1938
1957

```
-
    -
    -
    4896
    2987
    2496,4692
    2987, 3978\checkmark
    3672
    -
    2856,2958\checkmark
                    2346, 2369, 2496\checkmark, 3264, 3296, 4692\checkmark
    2754\checkmark
    2369, 3296, 3672\checkmark
    2754\checkmark
    2346, 3264, 3468,4386
```

None of the remaining possibles 1976, 2163, 2184, 2346, 2369, 2496, 2678, 2754, 2781, 2856, 2958, $2987,3162,3264,3296,3468,3672,3876,3978,4182,4386,4692,4896$ have associated possible larger PARs. Of the above possibilities, those with a \checkmark give possible PARTYs:

1456 and 3978 , missing digit 2 a common factor 1734 and 2958, missing digit 6 a common factor 1785 and 2496 , missing digit 3 a common factor \checkmark 1785 and 4692 , missing digit 3 a common factor $\checkmark \checkmark$
1836 and 2754 , missing digit 9 a common factor
1854 and 3672 , missing digit 9 a common factor 1938 and 2754 , missing digit 6 a common factor

So my PAR was 1785 and Sam's and Beth's PARs were 2496 and 4692 in either order.

