Square jigsaws

Victor Bryant

I chose a whole number and asked my grandson to cut out all possible rectangles with sides a whole number of centimetres whose area, in square centimetres, did not exceed my number. (So, for example, had my number been 6 he would have cut out rectangles of sizes $1 \times 1,1 \times 2,1 \times 3,1 \times 4,1 \times 5,1 \times 6,2 \times 2$ and 2×3.) The total area of all the pieces was a three-figure number of square centimetres.

He then used all the pieces to make, in jigsaw fashion, a set of squares. There were more than two squares and at least two pieces in each square.

What number did I originally choose?

Solution to 'Square jigsaws'

Answer: 29
If my number is N , then one of the square jigsaws is at least $\mathrm{N} \times \mathrm{N}$ (to accommodate the $1 \times \mathrm{N}$ piece). Also, to use at least two pieces, a 1×1 and 2×2 jigsaw are impossible. Furthermore, we can soon see that there are not enough small pieces to make two separate 3×3 jigsaws. Therefore the total minimum area of the rectangles must be at least $\mathrm{N}^{2}+9+16$.

If $\mathrm{N}=15$ a quick count gives a total area of the pieces as 210 , way short of $15^{2}+25$. For subsequent N we calculate the areas cumulatively below:

Number N	Rectangles of area =	Area of those rectangles	Total area T of all rectangles	T-N22 $\mathbf{2 5 ?}$
16	3	48	258	
17	1	17	275	
18	3	54	329	
19	1	19	348	
20	3	60	408	
21	2	42	450	
22	2	44	494	
23	1	23	517	
24	4	96	613	37
25	2	50	663	38
26	2	52	715	39
27	2	54	769	40
28	3	84	853	69
29	1	29	882	41
30	4	120	>999	

In no case is $\mathrm{T} \geq(\mathrm{N}+1)^{2}+25$ and so the jigsaws are $\mathrm{N} \times \mathrm{N}$ and at least two others totalling $\mathrm{T}-\mathrm{N}^{2}$ in area. Of those numbers listed in the right-hand column above, only 41 can be expressed as a sum of some of $9,16 \mathrm{~s}, 25 \mathrm{~s}, 36,49$ and 64 . So the only possibility is $\mathrm{N}=29$ and all the pieces in this case can be used to make square jigsaws of sides 29, 5 and 4 .
[For completeness, one such possible layout can be seen on the next sheet.]

