Rainbow Numeration

Stephen Hogg

Dai had seven standard dice, one in each colour of the rainbow (ROYGBIV). Throwing them simultaneously, flukily, each possible score (1 to 6) showed uppermost. Lining up the dice three ways, Dai made three different seven-digit numbers: the smallest possible, the largest possible, and the 'rainbow' (ROYGBIV) value. He noticed that, comparing any two numbers, only the central digit was the same and each number had just one prime factor under 10 (different for each number).

Hiding the dice from his sister Di's view, he told her what he'd done and noticed, but wanted her to guess the 'rainbow' number digits in ROYGBIV order. Luckily guessing the red and orange dice scores correctly, she then calculated the others unambiguously.

What score was on the indigo die?

With each possible score $-1,2,3,4,5$ and 6 uppermost the 7 th score must repeat one of these.
Each 7-digit number has just one single-figure prime factor - different for each. So the repeated score can't be 3 or 6 - otherwise digit sum div. by 3 and so for each permed number.

So initial possibilities are:-

SMALLEST

1123456
[factor 2 - not 3, 5 or 7]
1223456
[factor 2 - not 3, 5 or 7]
1234456
[factor $2-\operatorname{not} 3,5$ or 7]
1234556
[factor $2-\operatorname{not} 3,5$ or 7]

LARGEST
6543211
[not factors $2,3,5$ or 7] n/a
6543221
[not factors 2,3,5 or 7] n/a
6544321
[factor 7- not 2, 3 or 5] see below
6554321
[not factors 2,3,5 or 7] n/a

Central 4 in $1234456=2 \mathrm{xN}$ and $6544321=7 \mathrm{xM}$ also in ROYGBIV (so $\mathrm{G}=4$). ROY4BIV must also be div. by 5 , so $\mathrm{V}=5$ and rainbow value is ROY4BI5 with $\mathrm{R}, \mathrm{O}, \mathrm{Y}, \mathrm{B}$ and I not in same digit positions as 1234456 and 6544321 .
$[\mathrm{R}][\mathrm{O}][\mathrm{Y}] 4[\mathrm{~B}][\mathrm{I}] 5$ perms from $[2,3,4][1,3,4,6][1,2,6] 4[1,2,6][1,3,4,6] 5$ with clear restrictions. 2164??5 and 2614??5 - invalid - impossible to perm from above

2314645=5x.. - valid, but $2364145=5 x 7 x$.. - invalid - unambiguous given R and O
$24[1,6] 4[1,6] 35$ - ambiguous perms $-2414635=5 x$.. and $2464135=5 x$.. - no factor 7
3124645=5x.. - valid, but $3164245=5 x 7 x$.. - invalid - unambiguous given R and O
$34[1,2,6] 4[1,2,6][1,6] 5-$ ambiguous perms $-3414265=5 x$ x.. and $3424165=5 x$.. - no factor 7 - $3424615=5 x$.. and $3464215=5 x$.. - no factor 7
$3614245=5 x$.. - valid, but $3624145=5 \times 7 x$.. - invalid - unambiguous given R and O
$41[2,6] 4[2,6] 35-$ ambiguous perms $-4124635=5 x$.. and $4164235=5 x$.. - no factor 7
$43[1,2,6] 4[1,2,6][1,6] 5-$ ambiguous perms $-4314265=5 x$ x.. and $4324165=5 x .$. - no factor 7 - $4324615=5 x$.. and $4364215=5 x$.. - no factor 7
$46[1,2] 4[1,2] 35-$ ambiguous perms $-4614235=5 x .$. and $4624135=5 x$ x.. - no factor 7
For each unambiguous case above, $I($ ndigo die) $=4$

