Please Mind the Gap

Howard Williams

Ann, Beth and Chad start running clockwise around a 400 m running track. They run at a constant speed, starting at the same time and from the same point; ignore any extra distance run during overtaking.

Ann is the slowest, running at a whole number speed below $10 \mathrm{~m} / \mathrm{s}$, with Beth running exactly 42% faster than Ann, and Chad running the fastest at an exact percentage faster than Ann (but less than twice her speed).

After 4625 seconds, one runner is 85 m clockwise around the track from another runner, who is in turn 85 m clockwise around the track from the third runner.

They decide to continue running until gaps of 90 m separate them, irrespective of which order they are then in.

For how long in total do they run (in seconds)?

Solution

Answer: 7250 seconds

Let A's speed be "a" and for simplification change the frame of reference by deducting A's speed from each of the three runners' speeds so that A remains at the starting position - point 0 .
B's speed is now $1.42 \mathrm{a}-\mathrm{a}=0.42 \mathrm{a}$. If after 4625 s of running distances are 85 m apart then $4625 \times 0.42 \mathrm{a} / 400$ or $1942.5 \mathrm{a} / 400$ must have a remainder of $85,170,230$ or 315 .
From inspection "a" must be an even number and the following table shows the remainders for even single digit values of "a" -

Distance run - 1942.5a
Remainder, distance run divided by 400

Value of "a"			
2	4	6	8
3885	7770	11655	15540
285	$\mathbf{1 7 0}$	55	340

It can be seen that "a" must be $4 \mathrm{~m} / \mathrm{s}$ as only this speed gives a valid remainder value.
The position of A after 4625 s is 0 , that of B is 170 so C 's position must be 85 .
Let C's excess speed relative to A be " c ", where $0.42<c<1$ since C's speed is less than twice that of A. Therefore $\mathrm{c} \times 4 \times 4625 / 400$ must have a remainder of 85 .
This converts to $18500 \mathrm{c}=400 \mathrm{k}+85$ which becomes $3700 \mathrm{c}-80 \mathrm{k}=17$ for some whole number k .
Now let $\mathrm{C}=100 \mathrm{c}$, where $42<\mathrm{C}<100$, then $37 \mathrm{C}-80 \mathrm{k}=17$
37 C must end in 7 , so C ends in 1 and $\mathrm{C}=51,61,71,81$ or 91 .
The only value that gives a whole number for k is $\mathrm{C}=61$.
Let the total running time for the runners to be 90 m apart be " t ".
At time t A's position is 0 , B 's position is the remainder from $0.42 \mathrm{x} 4 \mathrm{xt} / 400$ and C's position the remainder from $0.61 \times 4 x t / 400$.
The allowable remainder values are $90,180,220$ and 310 , so
For $B, 1.68 t=400 y+90,180,220$ or 310 , for some whole number y, and correspondingly
For C, $2.44 \mathrm{t}=400 \mathrm{z}+180 \mid 310,90,310$ or $90 \mid 220$ (the order of the runners, clockwise, being $\mathrm{ABC} \mid \mathrm{CAB}$, $\mathrm{ACB}, \mathrm{BCA}$ or BAC|CBA) for some whole number z

To eliminate " t " in the above, multiply the first equation by 61 and the second by 42 to get $102.48 t=24400 y+61(90,180,220$ or 310$)=16800 z+42(180 \mid 310,90,310$ or $90 \mid 220)$

The first and fourth possibilities don't work, as 61×90 and 61×310 aren't divisible by 20 and all other terms are. We are left with:
$2440 y+(1098$ or 1342$)=1680 z+(378$ or 1302$)$, which reduce to:
(1) $61 y+18=42 z$
(2) $61 y+1=42 z$

The first solution of (1) is $y=30, z=44$ and $t=(400 y+180) / 1.68=7250$
The first solution of (2) is $y=11, z=16$ and $t=(400 y+220) / 1.68=2750$
The next solution of (2) is $y=53, z=77$ and $t=(400 y+220) / 1.68=12750$
Therefore the first time after 4625 s that there will be gaps of 90 m is at a time of 7250 s

